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ABSTRACT

The objective of this work is to discover the equations
that govern the response of stiff and flexible hydrofoils
in cloud cavitation via the usage of Sparse Identification
of Nonlinear Dynamics (SINDy). Cavitation is a
special form of separated multiphase flow relevant for
a diverse range of hydrodynamic lifting bodies such as
propellers, flow control surfaces, energy harvesting and
energy saving devices that operate at high speeds and/or
near the free surface. Since many lifting devices are
effectively thin plates or beams subject to high loading,
flow-induced deformations and vibrations may occur. The
deformations modify the surrounding flow, changing the
cavity dynamics and resulting response. In this work,
we employ SINDy to discover the coefficients of the
nonlinear dynamical system based on experimental data
for a stiff stainless steel (SS) and a flexible composite
(CF) hydrofoil in cloud cavitation collected at the
Australian Maritime College in the Cavitation Research
Laboratory water tunnel. We aim to determine the
variation of fluid added mass and damping coefficients
with the effective cavitation parameter, as well as the
resulting fluctuating lift coefficients due to fluid-structure
interaction using SINDy, and compare the coefficients
with the physics-based reduced-order model (ROM)
of the cloud cavitation response of flexible hydrofoils
presented in Young et al. (2022).

The results show that in general, while the
linear fluid added mass and damping coefficients are
approximately the same between the data-driven and
physics-based ROM, there were noticeable differences in
the trend and magnitude for the nonlinear fluid added

mass and damping terms, as well as the rigid hydrofoil
cavity forcing terms. Despite these differences, the
governing equations with nonlinear damping predicted by
SINDy can capture the dominant frequencies of the SS
and CF hydrofoils in unsteady cavitating flow. However,
the usage of SINDy is limited to the cavitation number
range where the intensity of load fluctuations caused
by unsteady cloud cavitation is higher than the ambient
noise. For this experimental setup, this range is 0.3 ≤
σ ≤ 0.8. Additional data or more accurate numerical
modeling would be needed for proper model development
and validation.

INTRODUCTION
Cavitation is a form of separated multiphase flow that
commonly occurs on the surface of hydrodynamic lifting
surfaces, such as marine propulsors, rudders, energy
saving and energy harvesting devices, particularly when
the device operates at high speeds and/or near the free
surface. Cavitation occurs when the absolute local
fluid pressure drops to or slightly below the saturated
vapor pressure (Brennen, 1995). The tensile stress
that the fluid experiences due to the difference in local
pressure and saturated vapor pressure triggers the rupture
of the fluid, commonly at voids or small contaminant
particles in the fluid, to form vapor bubbles (Brennen,
1995). Sheet cavitation occurs when cavities remain
attached to the lifting surface, with a liquid-vapor mixture
filling the separated flow region. This work focuses
on cloud cavitation, which describes an unsteady or
periodic formation, detachment, and collapse of sheet
cavities, giving the shed cavities a cloud-like appearance
(Brandner et al., 2010).
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There are two main driving mechanisms in cloud
cavity shedding: re-entrant jet shedding, or Type II
shedding, and shock-wave driven shedding, or Type I
shedding. Re-entrant jets are formed due to the adverse
pressure gradient at the cavity trailing edge, which
drives a liquid re-entrant jet beneath the attached sheet
cavity. The re-entrant jet flows upstream towards the
cavity leading edge to pinch off the sheet cavity at the
vapor-liquid interface. The cavity sheds and travels
downstream with a cloud-like appearance (Kawanami
et al., 1997). This cavity growth and shedding cycle
repeats periodically (Pham et al., 1999). The dominant
cavity shedding frequency of the re-entrant jet mechanism
is dependent on the maximum attached cavity length, and
the Strouhal number of the phenomenon lies constant at
around 0.2 to 0.4 for different hydrofoil geometries and
test conditions (Callenaere et al., 2001). Other cavity
shedding frequencies can also be present, as cavities tend
to shed in multiple small clouds due to non-uniform cavity
length along the span of the hydrofoil caused by 3-D
effects (Smith et al., 2020a,b).

The dominant cavity shedding mechanism
transitions from re-entrant jet to shock-wave driven
shedding when the maximum cavity length is larger
than approximately 60% of the body chord length,
as the re-entrant jet loses momentum while traveling
upstream and becomes unable to pinch off cavities (Fujii
et al., 2007; Bhatt et al., 2018; Ganesh et al., 2022).
Instead, a shock occurs when the local speed of sound
is approximately equal to or lower than the flow speed
(Ganesh et al., 2016). The speed of sound through the
fluid mixture drops by two orders of magnitude when
the local void fraction of the fluid is about 50% to 60%
(Shamsborhan et al., 2010). The shock condensation front
moves upstream from the trailing edge of the cavity and
causes the collapse of the cavities such that the cavities
shed periodically at a constant frequency of 10-12 Hz
(Fujii et al., 2007; Ganesh et al., 2016; Bhatt et al., 2018;
Smith et al., 2020a,b). The re-entrant jet and shock-wave
driven cavity shedding mechanisms can both occur at the
same time (Smith et al., 2020a,b; Young et al., 2022).
An image of shock-wave driven cavity shedding on a
hydrofoil can be seen in Figure 1.

Due to the periodic nature of cloud cavitation
shedding on hydrodynamic lifting surfaces, and because
many lifting devices are effectively flexible thin plates or
beams subject to high loading, flow-induced deformations
and vibrations may occur. The deformations and
vibrations will in turn modify the surrounding flow
and change the cavity dynamics and resulting response.
This change is known as fluid-structure interaction
(FSI). Dynamic vibrations induced by FSI in multiphase
flow can result in decreased device performance,
controllability, and service life due to fatigue. In addition,

changes in the local fluid mixture density and pressure
field during unsteady cavitation induce changes in the
fluid inertial, damping, and stiffness forces. As a result,
hydrodynamic instabilities, such as divergence or flutter,
can occur when the total structural and fluid stiffness
force or damping force approaches zero, respectively,
which increases the system response amplitude (Harwood
et al., 2019; Akcabay and Young, 2019, 2020). Changes
in inertial and stiffness parameters also induce changes
in the system natural frequencies, and may change the
order of the mode shapes (De La Torre et al., 2013;
Harwood et al., 2020; Young et al., 2020; Ng et al.,
2022). The changes in system natural frequencies,
as well as the natural variation of Type II shedding
frequencies with the effective cavitation parameter can
result in lock-in. Lock-in occurs when an external
forcing frequency (e.g. cavity shedding frequency)
locks into a nearby system natural frequency or its
superharmonic/subharmonic. When this occurs, both the
cavity shedding frequency and system natural frequency
or its harmonic deviate slightly from their original values
to synchronize, resulting in dynamic load amplification
(Kato et al., 2006; Ausoni et al., 2007; Akcabay et al.,
2014; Lelong et al., 2017; Young et al., 2017; Náprstek
and Fishcer, 2019). The increased vibrations due to
lock-in, instabilities, and resonance can not only cause
accelerated fatigue, but also loss of control and failure
of the device. As such, understanding and modeling the
hydroelastic FSI response in cloud cavitation and other
multiphase flows is necessary for the safe and effective
operation and control of hydrodynamic lifting surfaces.

Figure 1: Example image of shock-wave driven cavity
shedding on the CF hydrofoil at σ = 0.3. The cavity
length is slightly longer than the chord of the hydrofoil,
and the cavitation regime is approaching supercavitation.

Currently, the physics governing flexible
lifting devices in cavitation are not well understood.
Experimental modeling and data collection is challenging



due to many reasons. Firstly, optical collection of data
is difficult due to distortion from the changing refractive
index of multiphase flows and complications introduced
by flow-induced vibrations. Simultaneous collection of
data regarding the deforming solid and fluid interface
was only recently enabled through shape sensing systems
and digital image correlation techniques (Harwood et al.,
2019, 2020; Phillips et al., 2017b). Data collection
regarding fluid composition of multiphase flow was also
recently enabled through x-ray densitometry (Ganesh
et al., 2016; Wu et al., 2019). Scaling challenges are also
present when working with model-scale experimental
data due to the difficulties in meeting all dynamic
similarity requirements when working with material and
physical limitations under regulatory or testing facility
constraints (Ng et al., 2022). Numerical modeling of
FSI in multiphase flows is also challenging. Dynamic
FSI equations are highly complex and generally require
high-fidelity solvers such as a coupled computational
fluid dynamics (CFD) and computational structural
dynamics (CSD) simulation to resolve. However, a
model would need to capture the varying time and
length scales of multiphase flow, structural deformations,
stress propagations, and resulting FSI to accurately
model a system in multiphase flow. Moreover, there
is currently no reliable numerical model to capture this
phenomenon. Thus, this work focuses on developing
a data-driven, low-fidelity model that can accurately
model the dynamic FSI response of flexible lifting
surfaces in cloud cavitation. The model must be based
on physics to abide by known conservation laws and to
ensure explainability and scalability. However, because
the knowledge of the physics is currently limited, it is
important to develop the model based on data to correct
for invalid assumptions. For example, viscous FSI
effects, such as changes in tip vortices and shed vortex
dynamics caused by flow-induced bending and twisting
deformations, may not be negligible. In this case, the
potential flow assumption would not be valid.

Due to the availability of data and the
computational resources to store and process the data,
many fields of studies are building data-driven models
to predict responses that were previously unknown. In
addition, low-fidelity models are on the rise due to
the significant computational savings they offer when
compared to traditional CFD/CSD and other high-fidelity
solvers, which opens the doors for applications such
as real-time fluid flow and structural health monitoring
and control, as well as rapid surveying of large design
spaces. This interest is also true in the maritime and
aerospace industries, where data-driven reduced-order
models (ROMs) are being built to model various flow
conditions (Akcabay and Young, 2015; Gao et al., 2017;
Stabile et al., 2018; Alavi et al., 2018; Young et al.,

2022). However, many challenges exist when building
data-driven models. First, real world data sets contain
noise due to sensor functions, external events, or other
sources, which can bias the data or result in overfitting
of the model. Second, the scope of the collected data is
often limited, as it can be difficult to collect data for the
number of cycles needed to obtain sufficient statistics or
collect data during unstable responses. The lack of data
can result in a model with only limited accuracy under
certain operating conditions. Finally, unless some physics
is known, data-driven models would be near impossible to
scale between model- and full-size structures.

To combat the above challenges, the Sparse
Identification of Nonlinear Dynamics (SINDy) was
introduced as an algorithm to discover governing
equations of unknown systems from data (Brunton et al.,
2016). SINDy works by assuming that the derivatives
of the state variables of a system are related to a sparse
nonlinear combination of the state variables. As such,
it intakes a library of candidate functions, and performs
a regression with the data to determine the coefficients
on each function. To promote sparsity, a coefficient
magnitude threshold is enforced, and the terms with
coefficients that do not meet this threshold are dropped.
The process is repeated until a sufficiently sparse and
accurate model is obtained. SINDy is highly sensitive
to data processing. It may have difficulties when two
functions give similar state behaviors and may rely on
the transient response to differentiate between functions.
However, the transient response may not always be
available. The process also requires the derivative of
state variables, which is usually not measured. Because
physical data always contain noise, and the differentiation
process amplifies noise, the model identification can be
skewed. However, SINDy is powerful in that while a
library of candidate functions needs to be chosen, no
set equation form needs to be assumed prior to the
identification process. Additionally, when the library of
candidate functions is small, the identification process is
computationally efficient even with nonlinear terms.

The main contribution of this work is the
development of a reduced-order, nonlinear model using
SINDy that improves upon the reduced-order model
(ROM) of Young et al. (2022). This would further
illuminate the physics governing FSI in multiphase flows,
including the variation of fluid added mass and damping
in time and with the effective cavitation parameter.

METHODOLOGY

Experimental Methods

Model Setup and Hydrofoil Geometry - The experimental
setup and techniques of this investigation were completed
in the Cavitation Research Laboratory water tunnel of



the Australian Maritime College. Brandner et al. (2007)
presented a thorough description of the facility. The flow
conditions in the Cavitation Research Laboratory were set
at a constant chord-based Reynolds number Re = U∞c/ν

of 0.8× 106, where U∞ is the freestream velocity, c is
the mean chord, and ν is the kinematic viscosity. The
cavitation number is defined as σ = 2(p∞− pv)/(ρ fU2

∞),
where p∞ is the absolute static pressure at the hydrofoil
tip, pv is the vapor pressure, and ρ f is the water density.
The cavitation number was systematically lowered from
1.2 to 0.2 to cover cavitation regimes ranging from partial
leading edge sheet cavitation to supercavitation. The
dissolved oxygen levels of the fluid were maintained at
3 to 4 ppm for all measurements.

Two hydrofoils with the same undeformed
geometry were tested. One hydrofoil was made of Type
316 stainless steel (SS hydrofoil), and the other was made
of a carbon/glass-epoxy hybrid composite (CF hydrofoil).
The hydrofoils have a span of s = 300 mm, a root chord
of cmax = 120 mm, a tip chord of cmin = 60 mm, and
a mean chord c of 90 mm. The planform is unswept
and linearly tapered. The cross sections of the hydrofoils
are a modified NACA0009 section, with the trailing edge
thickened to accommodate the composite layup. Details
of the section can be found in Zarruk et al. (2014). The
details of the manufacturing can be found in Smith et al.
(2020a) and Smith et al. (2020b) for the SS and CF
hydrofoils, respectively. The hydrofoils were mounted at
an initial angle of attack of 6◦, and further details of the
mounting setup, instrumentation details, test procedures,
and results can be found in Smith et al. (2020a). The
basic material properties of the hydrofoils can be found in
Table 1. Note that fn1,dry and fn1,FW denote the in-air and
in-water fully wetted (FW) fundamental (bending) natural
frequencies, respectively. The resonance frequencies
are lower when fully wetted due to the higher fluid
inertial (added mass) effect. The modal frequencies tend
to increase with increasing extent of cavitation due to
reduced fluid added mass as more water is replaced with
vapor on the suction side, which has been explained in
Young et al. (2022).

The hydrofoils were selected to explore the
influence of flexibility, so they were built to have matching
undeformed geometries and quasi-isotropic properties.
Due to these considerations and the material composition
of the two hydrofoils, the SS and CF hydrofoils have
different natural frequencies. The difference in natural
frequencies allows for exploration of the differences in
hydrofoil responses that arise, such as lock-in of the
cavity shedding frequency with different subharmonics
of the natural frequency. The influence of the different
resonance frequencies can be found in Young et al. (2022),
and discussions of scaling effects can be found in Ng et al.
(2022).

Table 1: Material and structural properties of the SS and
CF hydrofoils (Zarruk et al., 2014).

Hydrofoil SS (Stiff) CF (Flexible)

E (GPa) 193 65

G (GPa) 77.2 22

I (mm4) 6,148 6,148

J (mm4×103) 854.5 854.5

ρs (kg/m3) 7,900 1,600

ρs/ρ f 7.9 1.6

Ks (kN/m) 200 69

Ms (kg) 0.577 0.117

fn1,dry (Hz) 94 121

fn1,FW (Hz) 58 41

Measurement and Data Processing Techniques -
Measurements were collected in three different run types,
labeled Long, Medium, and Short. The details of the run
types are summarized in Table 2. Force measurements
were taken during all three run types. Due to memory
limitations, image data was only taken during the Medium
and Short run types. The normal force was measured
by a force balance. The tip deflection was measured
using a Phantom v2640 high speed camera with a Nikkor
105mm f/2.8G lens. The pixel resolution was 512 ×
1504 for the SS hydrofoil and 896 × 1504 for the CF
hydrofoil. The spatial resolution was 0.049 mm px−1

for both hydrofoils. The tip deflection was calculated
through an edge detection process by identifying peaks
in the pixel intensity gradient along each row of pixels.
The tip bending displacement, δ , was determined by
taking the average distance of every row after the twisting
deformation was removed. Positive δ is defined as
translation towards the suction side.

Table 2: Data collection details of the various run types,
with the run duration, T , high-speed photography frame
rate, fHSP and force balance sampling rate, fFBS.

Run Type T (s) fHSP (Hz) fFBS (Hz)

Long 360 N/A 1,000

Medium 36 500 500

Short 1 6,600 6,600



One Degree-of-Freedom Dynamic ROM
This section briefly summarizes the one degree-of-freedom
(1-DOF) ROM presented for tip bending displacement
in Young et al. (2022). The SS and CF hydrofoils are
assumed to be quasi-isotropic and linearly elastic, to
undergo negligible chordwise deformation, and to have no
material bend-twist coupling. Because the FW bending
and twisting modal frequencies of the hydrofoils are well
separated, the bending and twisting degrees of freedom
can be assumed to be uncoupled, and the 1-DOF model is
valid for simulating only the bending fluctuations of the
hydrofoils. The focus is on the cavity-induced fluctuations
of the bending displacement and normal force, which are
earlier indicators of cavitation inception when compared
to the steady deformations and loads, as observed in
Young et al. (2022). Moreover, the frequency response of
the fluctuations yields information about cavity shedding
mechanisms and hydrofoil vibration characteristics, as
observed in the data presented in Smith et al. (2020a,b);
Young et al. (2022).

While twisting deformations were present, the
results presented in Smith et al. (2020a,b); Young et al.
(2022) showed that the twisting deformations were very
small. The CF hydrofoil underwent a maximum mean
tip twist of about 0.8◦ in FW conditions at an initial
angle of attack of 6◦ (Smith et al., 2020b; Young
et al., 2022). The corresponding maximum mean tip
twist of the SS hydrofoil was less than 0.1◦, and the
twisting measurements for the SS hydrofoil were not
clearly resolved with the precision of the method of data
acquisition (Smith et al., 2020a; Young et al., 2022).
The effect of the mean tip twist was included in the
model via the usage of the effective cavitation parameter,
as defined in Equation 8. The focus of the paper is
to capture the dynamic, or fluctuating response, of the
bending deformations, which is obtained by subtracting
the mean values from the total deformation. The twisting
resonance frequencies of the hydrofoils in water (255 Hz
for the SS hydrofoil and 179 Hz for the CF hydrofoil)
were much higher than that of the bending resonance
frequencies (58 Hz for the SS hydrofoil and 41 Hz for the
CF hydrofoil) and higher than that of the force balance
resonance frequency (122 Hz) (Young et al., 2022). Since
the resonance frequencies of the two modes are well
separated, and the higher frequency response could be
contaminated by the excitation of the force balance, only
the bending fluctuations were considered, and a bandpass
filter was used to process the data.

The tip bending fluctuations (δ ′) were
determined by subtracting the mean tip bending (δ ) from
the instantaneous tip bending displacement (δ̃ ):

δ
′ = δ̃ −δ (1)

Therefore, the equation of motion for the
bending fluctuations is written as below:

Msδ̈ ′+Csδ̇ ′+Ksδ
′ = F ′N (2)

Here, Ms and Cs are the effective structural mass
and damping, respectively. Ks is the effective structural
stiffness. Experimental measurements of the structural
damping coefficients of metallic and composite hydrofoils
were found to be over an order of magnitude lower than
the FW damping coefficients for the first bending mode
(Blake and Maga, 1975; Phillips et al., 2017a; Harwood
et al., 2020). Hence, Cs is assumed to be zero for the sake
of simplicity.

F ′N , or the fluctuating normal hydrodynamic
force, can then be separated into two components:
the unsteady cavity shedding force fluctuation on an
equivalent rigid hydrofoil component, F ′R, and the FSI
component, F ′FSI such that:

F ′N = F ′R +F ′FSI =C′Nqsc (3)

F ′FSI = −
(

M̂ f δ̈ ′+C f δ̇ ′+K f δ
′
)

(4)

In these equations, M̂ f , C f , and K f are the
fluid inertial, damping, and disturbing force terms. They
relate to the fluctuating bending acceleration, velocity,
and displacement, respectively. C′N is the fluctuating
normal force coefficient corresponding to the normal
hydrodynamic force, and q = 0.5ρ fU2

∞ is the dynamic
pressure.

By moving the FSI forces to the left-hand side,
Equation 2 can be rewritten as follows:(

Ms + M̂ f
)

δ̈ ′+
(
Cs +C f

)
δ̇ ′+

(
Ks +K f

)
δ
′ = F ′R (5)

Since only the bending DOF is considered, K f =
0. In potential flow, pure bending or heave displacement
perpendicular to the flow does not influence the normal
force on the body.

The fluctuating normal force due to unsteady
cavity shedding on a rigid hydrofoil can be modeled
as simple sinusoidal oscillations at the cavity shedding
frequencies:

F ′R = F ′Ro [sin(2π fc1t +φ1(t))+ sin(2π fc2t +φ2(t))]

=C′Rqsc (6)

where fc1 and fc2 are the Type I shock-wave driven and
Type II re-entrant jet driven cavity shedding frequencies,
respectively. φ1 and φ2 are random phase variations
between 0 and π . C′R is the fluctuating normal force
coefficient for an equivalent rigid hydrofoil.



The amplitude of the normal force coefficient,
C′Ro, is modeled as follows:

C′Ro =
F ′Ro
qsc

=
1

15
exp
(
−0.7(ψe−2.8)2) (7)

ψe is the effective cavitation parameter,
calculated as follows:

ψe = σ/(2αe) (8)

The effective cavitation parameter is dependent
on the effective angle of attack, αe = α0 + Sgθ , where
Sg = 1/3 is the integral of the twist shape function of the
hydrofoil, which is presented in Young et al. (2022), and
θ is the mean tip twist. Using αe accounts for differences
in the mean tip twist between the SS and CF hydrofoils.
It can be seen that C′Ro → 0 for ψe → ∞ and C′Ro ∼ 0 for
ψe = 0. This follows the physics in that the fluctuations
decay to zero in stable fully wetted flow and in stable
supercavitating flow. Since the fluctuating normal force
amplitude depends on the extent of cavitation, ψe is used
in Equation 7. Equation 7 gives the fluctuating normal
force coefficient for an equivalent rigid hydrofoil, and is
obtained by curve fitting the measured standard deviation
of the fluctuating normal force induced by unsteady cavity
shedding for the SS hydrofoil.

As found in previous literature, the Type I
shock-wave driven cavity shedding frequency is between
10-12 Hz and varies approximately linearly with the
effective cavitation parameter over a limited cavitation
parameter range, where the maximum attached cavity
length is approximately 60% to 120 % of the chord length:

fc1 = 10+
(ψe−0.9)

1.2
Hz for 0.9≤ ψe ≤ 3.3 (9)

As noted in the Introduction, re-entrant jet
and shock-wave driven cavity shedding can occur
simultaneously at a given cavitation number, either in
different portions of the span or interacting. The different
cavity shedding mechanisms can occur at different
random phases. Thus, φ1 and φ2 are included in
Equation 6.

Type I cavity shedding occurs over a limited
range of the effective cavitation parameter (0.9 ≤ ψe ≤
3.3), where the void fraction is in the proper range for
decreased local speed of sound. For ψe > 3.3, when
the maximum cavity length is less than 60% of the
chord length, only Type II cavity shedding is present, so
Equation 6 reduces to F ′R = F ′Ro sin(2π fc2t +φ2).

Young et al. (2022) fitted the experimental
results from Smith et al. (2020a,b) to relate the Type II
re-entrant jet driven cavity shedding frequency to ψe:

St2 =
fc2c
U∞

= 0.0045ψ
3
e +0.12 (10)

ψe is used in both Equations 9 and 10 to account
for the effective angle of attack, αe, with consideration for
the flow-induced mean tip twist, which is more significant
for the CF hydrofoil than the SS hydrofoil.

The fluid added mass, M̂ f , oscillates with the
periodic shedding of the cavity due to changes in the local
fluid mixture density. M̂ f is assumed to be modulated by
the Type II re-entrant jet cavity shedding frequency only
in Young et al. (2022):

M̂ f (t) = M f [1+ εm sin(2π fc2t)] (11)

M f =
MFW

f

1− εm
(12)

εm =
1
6
[tanh(ψe−3.4)−1] (13)

M f is the effective mean fluid added mass in
bending. MFW

f = fm f πρ f c2s/4 is the effective fluid added
mass in FW flow. fm f = 0.47 is the constant bending
shape factor for both hydrofoils, as the two hydrofoils
share the same undeformed geometry. The maximum
value of M̂ f corresponds to the fully wetted value, i.e.
M f ,max =MFW

f , while the minimum value of M̂ f decreases
with decreasing effective cavitation parameter ψe, as the
cavity length increases and lighter vapor takes the place
of liquid. The minimum value of M̂ f corresponds to the
supercavitation regime in which the entire suction side
of the hydrofoil is enveloped by the vaporous cavity, or
M f ,min→ 0.5MFW

f .
The wetted system natural frequency in bending,

fn1, is a function of the structural stiffness, Ks, and
structural and fluid added mass, Ms and M̂ f (t). The
wetted natural frequency can be obtained by solving the
eigenvalue problem of Equation 5. It is fluctuating due
to the time-varying fluid added mass, and given in the
following equation:

f̂n1 =

√
Ks(

Ms + M̂ f
) (14)

The fluid damping coefficient, ζ f , is calculated
as a linear function of the mean system bending frequency,
ignoring the fluctuations. Referencing Blake and Maga
(1975), the fluid damping coefficient is calculated
assuming a nearly 2-D response using Equation 15:

ζ f =
Cs +C f

2
√

(Ms +M f )Ks
=

U∞

2 fn1c
(15)

Due to the negligible structural damping, the
fluid damping coefficient, ζ f , composes the total
damping. The mean fluid added mass, M f , and the mean
system bending frequency, fn1, are used when computing
the damping coefficient with Equation 15, because the
oscillations due to cavitation are assumed to be small.



SINDy Problem Formulation
SINDy Algorithm - As developed by Brunton et al.
(2016), SINDy assumes that the derivative of the state
variables is a sparse nonlinear function of the state
variables, as shown below:

d
dt

x(t) = f (x(t)) (16)

x(t) ∈ Rn denotes the state of a system at time
t, and f (x(t)) denotes the relationship between x(t) and
its derivative, which can generally be found through the
equations of motion. Thus, the SINDy algorithm works
with Equation 17:

Ẋ = Θ(X)Ξ (17)

Here, X is the data taken regarding the system
states, organized in column form, Ẋ is its derivative, and
Θ is a library of candidate functions to be identified, such
as polynomials of trigonometric functions, applied to the
state X . Each column of Θ corresponds to one candidate
function. Ξ is a matrix which holds the coefficients of the
various candidate functions. Ξ can be determined by a
least squares regression, but to enforce sparsity, a simple
threshold is maintained for the coefficients such that
candidate functions with low values for the coefficients
are dropped. The process is repeated until sparsity is
achieved.

SINDy Application - Due to the nature of the data
collected in this experiment, we have made slight
modifications to the applications of the SINDy algorithm.

Knowing that we measured the fluctuating
normal force (F ′N), we can make some assumptions
regarding the rigid hydrofoil fluctuating normal force.
We can assume that F ′R takes the form of two sine
waves with random phase shifts, such as in Equation 6,
where F ′R is presented as the sum of one or two sine
waves at the cavity shedding frequencies. We can also
assume F ′FSI to have linear and sinusoidal damping and
added mass components, corresponding to the FW and
the cavity-induced fluctuating components, respectively.
The fluid disturbing force is assumed to be negligible
compared to the hydrofoil structural stiffness, thus K f ≈ 0.

The expected coefficients would differ by two
orders of magnitude in the dimensional equation, which
would bring difficulties when setting a coefficient
threshold. As such, the equation is normalized as below:

F̄ ′N =
F ′N

0.5ρ f sc3ω2
n1,dry

=
f (δ ′, δ̇ ′, δ̈ ′)

0.5ρ f sc3ω2
n1,dry

(18)

For clarity, an overhead bar is used to denote
nondimensional values. As examples, δ ′/c = δ̄ ′,
δ̇ ′/(cωn1,dry) =

¯̇
δ ′, and δ̈ ′/(cω2

n1,dry) =
¯̈
δ ′. The least

squares identification is set up in the following manner:

F̄ ′N = Θ( ¯̇
δ
′, ¯̈

δ
′)Ξ (19)

Θ(
¯̇ ′
δ ,

¯̈ ′
δ ) =



− ¯̇
δ ′ −

− ¯̈
δ ′ −

− ¯̇
δ ′ sin(2π fc2t) −

− ¯̇
δ ′ cos(2π fc2t) −

− ¯̈
δ ′ sin(2π fc2t) −

− ¯̈
δ ′ cos(2π fc2t) −

− sin(2π fc2t) −

− cos(2π fc2t) −

− sin(2π fc1t) −

− cos(2π fc1t) −



T

(20)

Equation 20 shows the function library used
during the identification process. The rigid hydrofoil
fluctuating normal force (F ′R) is assumed to be a sum
of sinusoidal functions oscillating at the cavity shedding
frequencies, and is encompassed by the last four columns
of the function library. The top six columns of the
function library are assumed to be related to F ′FSI . To
identify the effects of the periodic cavity shedding on
fluid added mass and damping, sinusoidal terms related
to the tip bending velocity and acceleration are included
at the Type II cavity shedding frequency. The Type
I cavity shedding frequency is not considered because
its effects are much smaller than those of the Type II
cavity shedding frequency, as assumed in Young et al.
(2022). We chose to only include candidate functions that
are informed by physics, because when many candidate
functions are included, some functions may be similar in
the range of interest, making identification difficult. Both
sine and cosine terms are included for each sinusoidal
related term to account for a random phase shift caused by
the stochasticity of the cavity shedding. Assuming that the
periodic forcing occurs at a given frequency but a random
phase, a sine term can be separated to a sine and cosine
term as shown below:

Asin(ωt + γ) = Bsin(ωt)+C cos(ωt) (21)

A =
√

B2 +C2 (22)

During the identification process, the equivalent
of B and C are calculated, and magnitude, A, for the



sinusoidal components of the candidate functions shown
in Equation 20 is presented in Figures 5, 6 and 7. The
phase is not presented because it is random due to the
stochasticity of cavity shedding. Because Type I cavity
shedding does not occur at all cavitation numbers, forcing
at the corresponding frequency is only included when
present. When not present, Θ drops the last two columns.

Although data was available for additional
cavitation numbers, SINDy was only performed for 0.3≤
σ ≤ 0.8. The identification was not performed because at
σ < 0.3, the stable supercavitation regime occurs; at σ >
0.8, small partially attached sheet cavities occur. There is
no significant forcing and displacement fluctuation signal
to analyze, as any fluctuation is on a similar order of
magnitude as noise. The cavity shedding on the CF
hydrofoil at σ = 0.3 and σ = 0.8 can be observed in
Figures 1 and 2, respectively.

Figure 2: Example image of cavity shedding on the CF
hydrofoil at σ = 0.8. The cavity length is approximately
half of the chord of the hydrofoil, and clear cloud
cavitation with the re-entrant jet driven cavity shedding
mechanism can be observed.

Only displacement data was collected during the
experiment, and the differentiation of data, particularly
polychromatic data, as in this case, amplifies noise and
is highly influential during identification. ¯̇

δ ′ and ¯̈
δ ′

were calculated using the smooth diff function in
MATLAB using a filter length of 2 (Luo, 2022). To
remove noise induced from numerical differentiation,
a bandpass filter with a minimum frequency of 1 Hz
and a maximum frequency of 50 Hz was applied to
the velocity series and acceleration series after the
calculation. Both data sets were also detrended to remove
the mean component of the velocity and acceleration. The
differentiation for ¯̈

δ ′ was completed after the filtering
of ¯̇

δ ′. To further smooth out the data, after the
nonlinear time series in Θ were assembled, each column
in Θ was numerically integrated through the trapezoidal

method twice, as the data sets were differentiated twice
to retrieve the acceleration. Integration smooths out
the data, particularly at higher frequencies. Between
each integration, the moving average of the time series
resulting from numerical integration was removed with
a window of 85 data points, which corresponds to 0.5%
of the data points within each time series. After the
coefficients were identified with the SINDy algorithm, the
coefficients were fitted to develop a data-driven model.
The model was applied to the collected displacement data
and derived velocity and acceleration data to calculate the
total forcing, F ′N , and the results are compared against the
experimental data.

The SINDy identification process, excluding any
pre- and post-processing of the data, required an average
CPU time of 0.0923s for Θ ∈ R17000×10 and 0.0677s for
Θ ∈R17000×8 on an Intel(R) Xeon(R) CPU E3-1246 v3 at
3.50GHz with 16.0GB RAM.

RESULTS

The coefficients for each candidate function returned
by SINDy in dimensional form is shown below, along
with comparisons to the values used in the ROM from
Young et al. (2022) summarized in the Methodology
section. Figures 3 and 4 show the linear coefficients,
corresponding to the first two columns of Equation 20,
which are the velocity (damping force) and acceleration
(inertial force) of the SS and CF hydrofoils, respectively.
For each oscillating forcing term, both the sine and cosine
terms were included in Θ to account for phase variations.
Figures 5 and 6 show the amplitude of the sine and
cosine coefficients as calculated by Equation 22, while
the phase is not shown, as it is random. Figure 7 shows
the SINDy estimated values for C′Ro, corresponding to the
last four columns of Equation 20, with the fit considering
both oscillations at fc1 and fc2. The coefficients are
plotted to the effective cavitation parameter, ψe, instead of
cavitation number, σ , to account for differences that occur
due to the higher twist deformation of the CF hydrofoil.
Expressing the results in ψe also allows the model to be
applicable for any σ and αe combination. The fit of the
SINDy predicted values are also shown in the figures, and
will be discussed later when presenting the data-driven
model derived from the identification. A few coefficients
lie off the range of the plots, and are considered outliers.

When looking at Figures 3 and 4, the coefficients
estimated by SINDy appear to be in the same order of
magnitude as the ROM presented in Young et al. (2022)
for both the SS and CF hydrofoils. Some coefficients
estimated for the SS hydrofoil appear to be higher than
the ROM values, but the difference is within one order
of magnitude. The discrepancy between the predicted
coefficients for the SS and CF hydrofoils is likely due to



the difference in uncertainty and signal-to-noise ratio of
the displacement data between the two hydrofoils. Since
both the SS and CF hydrofoils share the same undeformed
geometry, the fluid added mass coefficients should be the
same for both hydrofoils and independent of the hydrofoil
material properties, while the fluid damping would differ
due to the different wetted natural frequencies of the
system, as shown in Equation 15. This was the logic
used when formulating the ROM in Young et al. (2022).
However, because the data processing and experimental
methods are the same between the two hydrofoils, it
is reasonable to assume the magnitude of the noise is
the same between the measurements taken on the two
hydrofoils. Since the SS hydrofoil undergoes lower
bending deformation due to its higher stiffness, the SS
hydrofoil data would have a lower signal-to-noise ratio
than the CF hydrofoil data. Some coefficients estimated
by SINDy were also negative, which is unexpected, but
can be attributed to the function of the algorithm, which
will be summarized later.

It can be seen in Figures 5 and 6 that the
magnitude of the sinusoidal oscillation of fluid added
mass and damping are often active at the Type II cavity
shedding frequency. The oscillation amplitudes are about
the same between the two hydrofoils, and in the same
order of magnitude but slightly lower than the mean
values shown in Figures 3 and 4. The fits of the sinusoidal
oscillation amplitude are constrained to approach a value
close to 0 for ψe > 4 because stable fully wetted flow
is observed at high effective cavitation parameters. The
fits are also constrained to approach a value close to
0 for ψe < 1, as stable supercavitation is observed
at low effective cavitation parameters. Considering
the physics, the amplitude of fluid added mass and
damping oscillations should also be equal between the
two hydrofoils, since they have the same undeformed
geometry, and thus the fit is assumed to be the same
between the two hydrofoils.

Figure 7 shows that the identified C′Ro is about
an order of magnitude smaller than predicted in Equation
7. However, it is unlikely that such a low rigid hydrofoil
forcing can cause the levels of displacement observed on
the hydrofoil. This discrepancy may be attributed to the
inaccuracy of the assumed form of rigid hydrofoil forcing.
While the forcing is expected to be periodic, it may not be
sinusoidal. In addition, the random time-varying phase
associated with the forcing is not known, and therefore an
accurate basis could not be formed to be considered as a
candidate function for SINDy.

There are a few limitations of the SINDy
algorithm that can cause the unexpected coefficient
predictions. SINDy was used on each data set
independently, thus there is no consideration for
continuity of trends based on the effective cavitation

parameter during the identification process. In addition,
SINDy operates using a least squares fit, and therefore
scales each candidate function such that the sum of the
square of the error between each corresponding point in
the time histories of the identified C′N and measured C′N
is at its minimum. However, this does not guarantee
that the error between the coefficients of each term in
the governing equation is minimal when noise is present.
In addition, the current SINDy algorithm is unable to
predict time-varying phase angles. SINDy utilizes the
multiple measurements of data points in time to identify
coefficients, assuming constant phase. These issues may
be a cause of the difference in amplitude between the
identified C′Ro and Equation 7, as well as identification
errors that result in negative coefficients in Figures 3 and
4, where the coefficients are expected to be positive.

After the development of the fitted data-driven
model, the fitted curves in Figures 3 through 7 were
applied to the displacement, velocity, and acceleration
data to calculate the fluctuating normal force coefficient
(C′N , as defined in Equations 3 and 4) to visualize the
accuracy of the model. The resulting power spectral
densities (PSDs) of measured C′N are shown in Figure 8,
and the PSDs of C′N of the SINDy data-driven model are
shown in Figure 9.

Figure 3: SINDy predicted coefficients of the linear fluid
damping compared to ROM values developed by Young
et al. (2022). The top and bottom plots show the results
for the SS and CF hydrofoils, respectively. The fit of
the SINDy predicted value is shown by the black dashed
line. Values predicted by SINDy are in the same order of
magnitude compared to the ROM values.



Figure 4: SINDy predicted coefficients of the linear
fluid added mass compared to ROM values developed by
Young et al. (2022). The top and bottom plots show the
results for the SS and CF hydrofoils, respectively. The
fit of the SINDy predicted value is shown by the black
dashed line. Values predicted by SINDy are in the same
order of magnitude compared to the ROM values.

Figure 5: SINDy predicted coefficients of the
time-varying sinusoidal fluid damping. The open
black circles denote the amplitudes (square root of
the sum of the squares) of the sine and cosine terms in
Equation 20 at the Type II cavity shedding frequency. The
fit is shown by the black dashed line. Values predicted
by SINDy show that time-varying fluid damping is
significant in the fluid-structure interaction.

Figure 6: SINDy predicted coefficients of the
time-varying sinusoidal fluid added mass. The open
black circles denote the amplitudes (square root of
the sum of the squares) of the sine and cosine terms in
Equation 20 at the Type II cavity shedding frequency. The
fit is shown by the black dashed line. Values predicted
by SINDy show that time-varying fluid damping is
significant in the fluid-structure interaction.

Figure 7: SINDy predicted coefficients of the rigid
hydrofoil fluctuating normal force coefficients (C′Ro)
compared to ROM values developed by Young et al.
(2022). The fit of the SINDy predicted value is shown by
the black dashed line. Values predicted by SINDy are an
order of magnitude lower compared to the ROM values.



Exp: C
N

 PSD

Figure 8: The power spectral densities of the measured
C′N for the SS and the CF hydrofoils are shown with
the blue and the magenta line, respectively. The blue
circle and magenta square indicate the frequency with the
highest magnitude. The vertical dashed lines indicate the
system frequency. The crosses on the top axis indicate the
cavity shedding frequencies, and the vertical dash markers
indicate the heterodyne frequencies.

SINDy: C
N

 PSD

Figure 9: The power spectral densities of C′N as recreated
by the SINDy data-driven model with the training data.
The PSD is shown in the blue line for the SS hydrofoil
and shown in the magenta line for the CF hydrofoil. The
blue circle and magenta square indicate the frequency
with the highest magnitude. The vertical dashed lines
indicate the system frequency. The crosses on the top axis
indicate the cavity shedding frequencies, and the vertical
dash markers indicate the heterodyne frequencies. The
signature frequencies compare well with those from the
PSDs of the measured C′N , shown in Figure 8. The PSDs
also contain slightly higher noise at higher frequencies
due to numerical differentiation, and the magnitude is
generally about two orders of magnitude lower than the
experimental data.
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Figure 10: The WSSTs of the measured fluctuating
normal force coefficient (C′N) of the SS hydrofoil. The
contours shows energy concentration in dB at a given
frequency and time. Markers on the right axis indicate the
predicted Type I ( fc1) and Type II ( fc2) cavity shedding
frequencies, as well as the predicted system bending
frequency ( fn1). The red dash markers on the left axis
indicate the predicted heterodyne frequencies.
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Figure 11: The WSSTs of the measured fluctuating
normal force coefficient (C′N) of the SS hydrofoil as
reconstructed by SINDy. The contours shows energy
concentration in dB at a given frequency and time.
Markers on the right axis indicate the predicted Type I
( fc1) and Type II ( fc2) cavity shedding frequencies, as
well as the predicted system bending frequency ( fn1). The
red dash markers on the left axis indicate the predicted
heterodyne frequencies. Good agreement can be seen
with the measured WSSTs as shown in Figure 10.
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Figure 12: The WSSTs of the fluctuating normal force
coefficient (C′N) of the CF hydrofoil. The contours shows
energy concentration in dB at a given frequency and time.
Markers on the right axis indicate the predicted Type I
( fc1) and Type II ( fc2) cavity shedding frequencies, as
well as the predicted system bending frequency ( fn1). The
red dash markers on the left axis indicate the predicted
heterodyne frequencies.
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Figure 13: The WSSTs of the fluctuating normal force
coefficient (C′N) of the CF hydrofoil as reconstructed by
SINDy. The contours shows energy concentration in dB
at a given frequency and time. Markers on the right axis
indicate the predicted Type I ( fc1) and Type II ( fc2) cavity
shedding frequencies, as well as the predicted system
bending frequency ( fn1). The red dash markers on the left
axis indicate the predicted heterodyne frequencies. Good
agreement can be seen with the measured WSSTs shown
in Figure 12.



Figures 8 and 9 show good comparison between
the dominant frequencies of the measured C′N and
the SINDy reconstructed C′N , including at the cavity
shedding frequencies and the system modal frequency.
However, the magnitude of the noise comparative to the
magnitude of the signature frequencies is higher in the
C′N calculated through the SINDy model when compared
to the measured data. This discrepancy is likely due
to the noise amplification caused by the differentiation
of numerical data, despite applying a bandpass filter
throughout the differentiation process. The power of the
reconstructed C′N is also about two orders of magnitude
lower when compared to the measured data, likely due
to the inaccuracy in the prediction of the rigid hydrofoil
forcing. Because the power of C′N is less than one, the
difference of two orders of magnitude in the power of the
measured and reconstructed C′N indicates the difference of
one order of magnitude in amplitude. This corresponds to
the difference of amplitude between the identified C′Ro and
the ROM model presented in Young et al. (2022), as seen
in Figure 7.

The results described above can be further
observed in wavelet synchrosqueezed transform (WSST)
plots, obtained using the algorithm developed by Thakur
et al. (2013), of the fluctuating normal force coefficient
(C′N). The WSSTs of the measured C′N and SINDy model
generated C′N for the SS hydrofoil are shown in Figures 10
and 11, respectively. The WSSTs of the CF hydrofoil can
be seen in Figure 12 for the measured data and 13 for the
SINDy reconstruction.

It can be seen from the WSSTs that the signature
frequencies of C′N compare well to each other at the
cavity shedding frequencies and system modal frequency,
although the SINDy model produces higher levels of
noise due to the noise amplification of the differentiation
process. On the SS hydrofoil in particular, the energy
concentrations of the noise can significantly overtake the
energy concentrations of the cavity shedding frequencies.
It can also be seen in Figures 11 and 13 that the predicted
noise content at σ = 0.3 is particularly high.

Data-Driven Model

After testing the model with the training data,
the model was used to generate displacement data.
Coefficients identified from both the SS and CF hydrofoils
were considered in the curve fitting of the data-driven
model. The fitted curves are shown as dashed lines
in Figures 3 through 7, and are summarized below
in Equations 23 through 27, as well as shown in the
legends of Figures 3 through 7. The fitting from
Figure 7 is used, even though as previously discussed,
the difference of an order of magnitude between the
amplitude of the identified C′Ro and the C′Ro predicted in
Equation 7 corresponds to that between the modeled and

measured C′N . Thus, the order of magnitude difference
between the experimental and predicted displacements
is apparent. These fitted equations are used to replace
the corresponding terms that are shown in Equation 5,
as well as to add the sinusoidal fluid damping term,
to write Equation 28. A random time-varying phase
angle is assigned to each sinusoidal term to account
for the interactions and stochasticity of unsteady cloud
cavitation. A random phase angle in time is assigned to
the rigid hydrofoil forcing. Predictions are obtained by
solving the data-driven model using the Crank-Nicolson
method.

C f = 222 kg/s (23)

M f = 0.92 kg (24)

C f ,c2 = 0.05+100exp(−2(ψe−2.5)2) kg/s (25)

M f ,c2 = 0.05+0.9exp(−3(ψe−2.5)2) kg (26)

C′Ro =
F ′Ro
qsc

= 0.006exp
(
−0.7(ψe−2.8)2) (27)

(
Ms +M f +M f ,c2sin(2π fc2t + γ1(t))

)
δ̈ ′

+
(
C f +C f ,c2sin(2π fc2t + γ2(t))

)
δ̇ ′

+(Ks)δ
′

= F ′Ro(sin(2π fc1t + γ3(t))+ sin(2π fc2t+γ4(t))) N

(28)

Figures 14 and 15 compare the spectrograms
of the normalized tip bending of the experimental and
data-driven model (Equations 23 - 28) results for the SS
and CF hydrofoils, respectively.



Figure 14: Comparison of the experimental (top)
and data-driven model (bottom) spectrograms of the
normalized tip bending fluctuations (δ ′/c) for the SS
hydrofoil. Lines indicating the Type I ( fc1) and Type
II ( fc2) cavity shedding frequencies, as well as the
mean and range of variation of the predicted system
bending frequency ( fn1) are shown in various dashed
lines. Lower magnitude is observed on the modeled
spectrogram due to the low prediction of rigid hydrofoil
forcing. Good general agreement is observed between
the two spectrograms for frequency responses, with the
predictions showing slightly higher vibrations at areas
above the cavity shedding frequencies, but the lock-in is
not well captured.

Figure 15: Comparison of the experimental (top)
and data-driven model (bottom) spectrograms of the
normalized tip bending fluctuations (δ ′/c) for the CF
hydrofoil. Lines indicating the Type I ( fc1) and Type
II ( fc2) cavity shedding frequencies, as well as the
mean and range of variation of the predicted system
bending frequency ( fn1) are shown in various dashed
lines. Lower magnitude is observed on the modeled
spectrogram due to the low prediction of rigid hydrofoil
forcing. Good general agreement is observed between
the two spectrograms for frequency responses, with the
predictions showing slightly higher vibration around the
cavity shedding frequencies, but the lock-in is not well
captured.

It can be seen in Figures 14 and 15 that while the
SINDy generated model is generally able to capture cavity
shedding frequency activities, it still has trouble modeling
lock-in and vibrations at the natural frequency. There is
a slight improvement from the ROM presented in Young
et al. (2022) in that there is modeling of a broader banded
response at the cavity shedding frequencies, which is
due to the changes in modeling with the sinusoidal fluid
forcing terms. The previously stated discrepancy between



the order of magnitudes of the predicted and experimental
data can also be seen in Figures 14 and 15.

The difficulties in modeling lock-in can be
explained through the composition of the data-driven
model. In data-driven modeling, verification of the
model would usually be completed with a testing data
set not used during model training. However, because
of the limitations of time and memory during data
collection, the data set is limited to one run per cavitation
number at the “Medium” run type, which is suitable for
statistical dynamic analysis. Thus, there is no additional
experimental data to use for model testing, and hence
we compared the predicted coefficients with the ROM
values given in Young et al. (2022) in Figures 3 through
7. In addition, when considering Equation 6, the resulting
fluctuating normal force is composed mainly of one or
two frequencies at the Type II and/or Type I cavity
shedding frequencies, with noise added through random
phase. Type I and Type II cavity shedding frequencies
are each assumed to be a single value with Equations 9
and 10, respectively. However, when observing Figure
8, C′N contains many frequencies, including at the cavity
shedding frequencies, heterodyne frequencies, and system
natural frequencies. Type II cavity shedding frequencies
also often differ at different points of the span of a
hydrofoil (Smith et al., 2020a,b), which is not captured by
assuming a single cavity shedding frequency in Equation
10. In other words, the frequency spectrum of the rigid
hydrofoil forcing is likely more broadbanded than what
Equation 6 captures. Thus, a more reliable estimate of
the rigid hydrofoil fluctuating normal force would be
necessary to verify the model, which could be obtained
through experimental testing of a more rigid model or via
numerical simulation of a rigid hydrofoil. In addition,
this model was built only considering one set of data per
hydrofoil per cavitation number, so if any biases or skews
were present in the data, they could not be identified when
building the model. A more accurate model could be built
if more sets of data were available.

CONCLUSION AND FUTURE WORK

The present work investigated the usage of SINDy to
determine a data-driven model that can accurately predict
the deformations and normal force of a stiff stainless
steel (SS) and a flexible composite (CF) hydrofoil in
unsteady cloud cavitation. The model builds upon the
form of the physics-based ROM presented in Young et al.
(2022), and should be generally applicable for other
hydrofoils as long as the structural mass and stiffness
properties are known. Cloud cavitation is a form of
multiphase flow characterized by periodic cavity growth,
shedding, and collapse, which can induce unsteady
forces and vibrations, as well as material damage to a

structure operating in such flows. There is limited study
regarding the physics and governing equations of the FSI
of structures in unsteady cloud cavitation. This paper
identified the coefficients of the governing nonlinear
dynamical system through SINDy and compared the
model results to experimental data. SINDy was selected
as the machine learning algorithm due to its ability to
handle nonlinear terms and its computational efficiency.
The SINDy algorithm was only able to be used on a
portion of the collected data; at very low and very
high cavitation numbers, supercavitation and small partial
cavities occur, and the collected data for the deformations
and load fluctuations are at the same order of magnitude
as noise, which interferes with the identification process.

The SINDy identification showed that the linear
fluid inertial and damping terms were in the same
order of magnitude as those predicted in the ROM
described by Young et al. (2022). Physics informed us
that the fluid inertial coefficients should be independent
of the material properties since both the SS and CF
hydrofoils shared the same undeformed geometry, and
fluid damping coefficients should differ slightly due to the
system bending frequency. Unlike the ROM presented
in Young et al. (2022), the SINDy predicted coefficients
were different for the SS and CF hydrofoils. The
difference is likely due to the different signal-to-noise
ratios of the displacement measurements of the SS and CF
hydrofoils, as the SS hydrofoil experienced much lower
deformation due to the higher stiffness. As shown in the
results, the SINDy algorithm is highly sensitive to noise.
The noise amplified during numerical differentiation of
polychromatic displacement data for the usage of SINDy
likely contaminated the results, despite the filtering and
data processing. The SINDy algorithm also showed
that not only were linear forcing terms significant to the
modeling of FSI in cloud cavitation, fluid damping and
inertial forces oscillating at the Type II cavity shedding
frequency were also significant. The identified model
can accurately capture most of the signature frequencies,
such as cavity shedding frequencies and system bending
frequencies, from the displacement data, but the intensity
of the modeled signature frequencies was often lower
than that of the experimental results. The noise at
high frequencies from numerical differentiation of the
velocity and acceleration from the displacement data
likely influenced the coefficients identified by SINDy to
amplify signals at lower frequencies and limit signals at
higher frequencies.

Verification of the model was completed using
numerical data, as there was no new or additional
experimental data available for testing. However,
the verification is flawed, as the SINDy identification
showed that the rigid hydrofoil forcing was not well
represented with sinusoidal terms at the cavitation



frequency with a random phase. This is demonstrated
by the low coefficients identified on the sinusoidal terms
corresponding to the rigid hydrofoil forcing. With a
rigid hydrofoil forcing term that is highly simplified, it
is difficult to capture all of the signature frequencies that
occur during cloud cavitation as well as the broadbanded
nature of the frequency spectrum. This model predicts tip
displacements that display activity at the cavity shedding
frequencies and the system modal frequency, but it has
difficulty capturing the behavior at other frequencies. As
such, it is still difficult to predict phenomena such as
nonlinear subharmonic lock-in, where both the force and
the displacement are affected. Further experiments using
more rigid hydrofoils should be completed to better model
the rigid hydrofoil forcing term.

The potential of discovering the governing
equations of FSI response in multiphase flow using a
hybrid data-driven model is promising, but cavitation
is a complex phenomenon, and data regarding a single
set of experiments does not produce a complete model
applicable to all flexible systems in cavitating flow,
especially since there are various types of cavitation
that occur on different geometries, materials, and under
various operating conditions. To continue in this
direction, more data of different systems in cavitating flow
should be taken. This work could benefit from additional
runs to use both during the model identification phase and
model testing phase, and the present model should not be
taken as complete. To avoid amplification of noise during
the numerical differentiation process, acceleration data
should be taken in addition to displacement data during
the experimental process. Velocity data could be obtained
through integration of the acceleration data instead of
differentiation of the displacement data, as numerical
integration would smooth the noise rather than amplify
it. In addition, because SINDy utilizes least squares
modeling, and each identification is done independently
of other identifications, it would be beneficial to explore
other machine learning algorithms that are more robust
when handling time-varying coefficients and can consider
for continuity across different sets of data. Multiple
models should be built to identify common ground across
various systems in cavitating flow, which would better
illuminate the physics of multiphase flow. This model
could also be expanded to multiple DOFs for more general
flexible systems in which material or geometry bend-twist
coupling is relevant.

Once the physics and governing equations of
cavitation and multiphase flows are better understood,
detection and control of cavitation inception will become
feasible. With reliable low-fidelity models, displacement
and acceleration sensors can be used to monitor flow
conditions as well as structural health. If found feasible,
building low-fidelity models that can accurately model

unsteady multiphase flow, including for free surface
applications with unsteady vessel motion, can improve
the control authority and safety of autonomous marine
vessels.
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Ganesh. H., Mäkiharju. S. A., and Ceccio. S. L. Bubbly
shock propagation as a mechanism for sheet-to-cloud
transition of partial cavities. Journal of Fluid
Mechanics, 802:37–78, 2016. ISSN 0022-1120.

Ganesh. H., Bhatt. A., and Ceccio. S. L. Influence
of tunnel blockage on the partial cavity dynamics of
cavitating NACA0015 hydrofoils. In 34th Symposium
on Naval Hydrodynamics, 2022.

Gao. C., Zhang. W., Kou. J., Liu. Y., and Ye. Z. Active
control of transonic buffet flow. Journal of Fluid
Mechanics, 824:312–351, 2017.

Harwood. C., Felli. M., Falchi. M., Ceccio. S. L.,
and Young. Y. L. The hydroelastic response of a

surface-piercing hydrofoil in multiphase flows: Part I
- Passive hydroelasticity. Journal of Fluids Mechanics,
881:313–364, 2019.

Harwood. C., Felli. M., Falchi. M., Garg. N., Ceccio.
S. L., and Young. Y. L. The hydroelastic response of a
surface piercing hydrofoil in multiphase flows: Part II -
Modal parameters and generalized fluid forces. Journal
of Fluid Mechanics, 884:A3, 2020.

Kato. K., Dan. H., and Matsudaira. Y. Lock-in
phenomenon of pitching hydrofoil with cavitation
breakdown. JSME International Journal Series B Fluids
and Thermal Engineering, 49(3):797–805, 2006.

Kawanami. Y., Kato. H., Yamaguchi. H., Tanimura. M.,
and Tagaya. Y. Mechanism and control of cloud
cavitation. ASME J. Fluids Eng., 119(4):788–794,
1997. ISSN 0098-2202.

Lelong. A., Guiffant. P., and André Astolfi. J. An
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of cloud cavitation excitation with the complex structural
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They are in search of the limitations of data driven
structural response models and conclude that the noise
level in experimental data, particularly in the cavitation
number range where cloud excitation dynamics became
less dominant, is too large to come to a reliable prediction
of the structural response. Also the relatively simple
sinusoidal model that should capture the dynamics of the
normal force acting on the foil limits a reliable prediction
of the response over a broad frequency range.

But in the end, the purpose of the prediction model
determines the required reliability and required resolution
in the frequency. And so, the applicability of the
current model, with its restrictions in reliability at certain
cavitation numbers, might still be adequate for control
system design or structural health monitoring. Could the
authors comment on acceptance criteria for prediction
models? Wouldn’t the current model offer a sufficient
level of uncertainty in the frequency range of interest?

Authors’ response - Thank you for the positive
comments. We agree that given the collected tip
displacement data, the model is sufficient for learning
the key driving frequencies (cavity shedding frequencies
and variations of the system resonance frequency in
cavitating conditions), and for the design of controllers to
suppress flow induced vibrations. By identifying the key
cavity forcing frequencies applied to the hydrofoil, flow
condition monitoring is possible as well.

On the other hand, if the objective of the model is accurate
estimation of the amplitude and frequency of the unsteady
forcing on the hydrofoils, such as for the prediction
of accelerated fatigue of hydrofoils made of different
materials, then improvement in the model is desired.
Thus, obtaining additional sets of experimental data be
taken for both training and verifying of the data driven
model is crucial to determining the governing equations
of fluid-structure interaction response in multiphase flow.

Specific questions and comments on the text of the paper:



1. Introduction, pg 3: ”However, because the knowledge
of the physics is currently limited, it is important to
develop the model based on data to correct for outdated
assumptions.” - Could you be a bit more specific on the
outdated assumptions? This is quite vague.

Authors’ response - Invalid assumptions include
assumptions such as potential flow or small displacement
of the structure. These are commonly made when forming
linear theoretical models of a system. For example,
viscous FSI effects, such as changes in the tip vortices and
shed vortex dynamics caused by flow-induced bending
and twisting deformations, may not be negligible. In this
case, the potential flow assumption would not be valid.

2. Captions with Fig. 14 and 15: ”Good general
agreement is observed between the two spectrograms,
with the predictions showing slightly higher vibrations
at areas above the cavity shedding frequencies, but the
lock-in is not well captured.” - It seems to me from the
spectrograms that the predictions give a slightly lower
vibration level, given the slightly less intense colours in
the predictions. My interpretation seems to be confirmed
by the conclusions: ”... but the intensity of the modeled
signature frequencies was often lower than that of the
experimental results.”

Authors’ response - The spectrogram created by the
model does show slightly less intense colors due to a
couple points. Firstly, when lock-in is not well captured,
the amplified displacement during this phenomenon
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nature of the hydrofoil vibration is not well captured
due to assumptions regarding the rigid hydrofoil forcing,
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colors overall.
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