Global mode visualisation in cavitating flows
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Abstract

A technique for visualising global frequency modes and phasing information is presented using fast Fourier
transforms applied to individual pixel intensities of high-speed photography image frames. A singular value
decomposition is applied to the resulting complex data set to allow the application of windowing to the trans-
forms. A high-speed image set of cloud cavitation about a sphere is used to demonstrate the technique and
identify the dominant cavitation shedding modes. Three frequencies were found and the modal analysis show
these to correspond to large-scale near symmetric shedding, intermediate-scale oblique shedding, and small-
scale near symmetric shedding, respectively. Results obtained by the presented image analysis technique show
close agreement to shedding frequencies obtained from pressure data.
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Introduction

Modal decomposition methods have been used in a variety of fluid mechanics applications to approximately describe
complicated physical phenomena with few dimensions. Two commonly used techniques are the proper orthogonal
decomposition (POD) and the dynamic mode decomposition (DMD). The POD ranks spatial structures according to
the kinetic energy, if the data set is velocities [1]. This allows filtering based on energy so that experimental noise and
turbulence can be removed. The DMD is based on growth-rates of frequencies, so that amplifying or decaying features
can be extracted, but permanent features are not accentuated [e.g. 2, 3].

Here we present a technique based on the fast Fourier transform (FFT) of the pixel intensity in high-speed images.
The objectives are to identify dominant frequencies in the videos, identify the regions in the spatial domain where
these modes are manifested and to identify the phasing differences across the domain. This technique has been used
previously in Basley et al. [4, 5] and [6], but here we extend the technique to enable the ‘averaging’ of multiple time
instances to remove noise from the modes, as introduced by Venning [7] for velocimetry data.

In order to demonstrate the features of the decomposition, an example flow of cavitation about a sphere at a Reynolds
number of Re = U..D/v = 1.5 x 10° and a cavitation number ¢ = 2(p.. — p,,)/pU2 = 0.8 is presented. The sphere was
sting-mounted in the centre of the tunnel test-section and the cavity was visualised with a Photron SA-5 high-speed
camera acquiring megapixel images at 7000 fps. The conditions here match that of [8], and the three frequencies
extracted from our video analysis correspond to those from the pressure measurements. The nature of the shedding
modes of the cloud cavities are able to be distinguished using the decomposition here.

Spectral density estimation

The fast Fourier transform (FFT) is applied to the pixel intensity time series at each pixel location on the image. A
Welch periodogram with Hanning windows was used to estimate the spectral density. For each data set, the window
length, N, was 8192 points, representing 1.2 s or approximately 30 cycles of the dominant frequency, though this
frequency was estimated as it varies with the cavitation number. The shift between windows, Ng, was 256 points.
Given the time sequence is 21,000 points, there were ' = 51 windows.

For each position (j) in the image plane, and each Welch window (), the FFT of the pixel’s intensity signal (x;) is
given by equation 1 with P and ¢ corresponding to the power and phase of each sinusoidal component of the time
series, while f is the wavenumber. Arg(Xj;r) returns the principal value of the angle from the real axis to a line from
the origin to the complex number X j; 7, which in a practical sense, is atan2(Im (X, r),Re(Xj;y)).
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The averaging across the T windows is trivial for the power (equation 2). For the case of the sphere, the average of the
spectra across the spatial domain, (P;f); (figure 1) finds three key frequencies, as was reported in de Graaf et al. [8].
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Figure 1: Spatial average (left) of all spectra across the domain identifying three peaks. Photograph (right) showing typical flow state at a cavitation
number of 0.8.

It is less straightforward to produce a representative view of the phase angle, however, since it is constantly changing
and thus a temporal average of ¢;;s will not be meaningful. In fact, given enough 7 instances, the temporal average
will be zero. The phase of different windows are given in figure 2. The same general flow pattern can be seen in each,
though the phase is offset by some angle between the instances. The phase offset is approximately the ratio of the time
shift (Ns) to the temporal wavelength of the structure. To present an ‘averaged’ view of the phase information from
each of the windows, the singular value decomposition (SVD) was used to decompose the Fourier coefficients and
return a series of SVD-modes, the first being most representative of the spatial mode corresponding to each frequency.
The matrix @ is constructed in which each column represents a different window (¢) of the phase of one frequency —
the size of this matrix is J x T’ (for the present study: 2% x 51):

Welch windows

Xjz1y=1 Xj=14=2 ... Xj=14=T
Xj=24=1 Xj=24=2 ... Xj=p=r1 ) )

D= . . ) . Spatial domain 3)
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The SVD factorizes the complex field @y, decomposing it with:
@, =LY Ry “)

Which returns Ly: a series of orthonormal eigenvectors of @ fCIJ; which is a square matrix of size J x J, X: a
rectangular matrix where the diagonal contains T values that are the square-root of the eigenvalues (these correspond
to how much of the variability in @ is accounted for in each SVD-mode), and Ry: a series of eigenvectors of <I>§<I> 5
a square matrix of size T x T'.
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Figure 2: Phase angle of the fundamental cavitation shedding frequency about a sphere at ¢ = 0.8. Sequential instances of time (Welch windows)
are displayed.

The T SVD-modes are the projections of @ onto the basis eigenvectors (@ Ry). This mode shape and the correspond-
ing variance (from Xr) of each SVD-mode for the second frequency (> from figure 1) are given in figure 3. The first
SVD-mode captures the bulk of the variance, so should be the most representative of the phase field. This is verified
by comparing figure 2 with figure 3, and as such it is the only SVD-mode presented for the remainder of the paper.
The most useful result of the modal analysis is the spatial phase information of each frequency across the video frame
revealing the direction of the cavity flow, and more importantly the regions of the flow that are travelling in phase.
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Figure 3: Variance (top) of each of the f, SVD-modes (bottom) as a percentage of the total variance. The first SVD-mode contributes 90.3% of
the total variance, representing the most likely phase pattern in the flow, and corresponds well to the instantaneous frames in figure 2. The mode
number increases across the page first.

The first SVD-mode for each of the three shedding frequencies from figure 1 are presented in figure 4. The primary
large-scale shedding mode is f> = 0.48. In this mode, the cavity is shed as a series of ring-like vortices that become
oblique in the wake (figure 5). Visualisation of this shedding mode suggests that it is quite powerful for most of
the wake portion captured by the video frame, particularly for 0.2 < x/D < 0.7. The mode is symmetric about the
z/D = 0 plane, reminiscent of the ring-like vortices from a shedding sphere at 300 < Re < 420 presented in [9]. The
shed cavities condense near x/D = 0.8, which is why the energy content decays from then on.
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Figure 4: Frequency information for the flow around a sphere at ¢ = 0.8. The left hand column contains the spatial distribution of the power, and
the right-hand column is the phase of those structures. The mode power is normalised to the maximum power of that frequency.

Figure 5: Six equi-spaced photographs capturing three cycles of the f, shedding mode, showing alternating oblique vortex shedding. The images
are separated by half the period, such that each column is at a single phase.

One difficulty with this technique is that the phase information is averaged over the window of interest, so when
different flow features occur at the same frequency, the results are misleading. For example, examining the high-
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Figure 7: Photographs showing a single cycle of the f3 shedding frequency. The images are separated by half the period.

speed footage in regions where the f> peak is powerful (figure 5) suggests that the shed vortices are actually oblique,
alternating slope with each cycle. So, while the average of the phase is, in-fact, symmetrical, the individual structures
may be oblique, thus care must be taken to investigate the original videos to understand the true nature of the modes. A
clue to the true shape of this mode may be in the second of the SVD modes presented in figure 3, which shows oblique
structures. Additionally, considering only one half (z/D > 0) of the phase diagram in figure 4 shows the angled nature
of the shedding.

The first shedding mode, f; = 0.23 is concentrated in the near-wake of the sphere (figure 6). It is a sub-harmonic of
the primary frequency. It is slightly more dominant in the bottom than the top, suggesting that this mode could be
suppressed to some extent by the sting and/or hydrostatic differences. The shed cavities often take the appearance of
hair-pin vortices (figure 6).

A third shedding mode, f3 = 0.64, is also symmetric. Analysis of the video (figure 7) suggests that this frequency is
associated with a very short cavity followed by a longer cavity. The initial cavity is still in the near vicinity of the body
when the second cavity is growing. The energy of this higher frequency mode dissipates earlier than f,, with this short
cavity being replaced by one of the two large-scale events.

Conclusion

A technique for decomposing time-resolved visual data is presented using a Fourier transform to determine the spatial
distribution of power for all frequencies of interest. The resulting reconstructed images reveal the locations within the
image that experience a given frequency.

The structure of the phase can be determined by a singular value decomposition of the different phase windows. The
phase information is useful to show the nature of the oscillations, but care must be taken that the spatial mode is, in
fact, exemplary of the actual flow structures.

We use a high-speed video of cavitation about a sphere to show how this technique can be used to aid in the un-
derstanding of the mechanisms associated with the three shedding frequencies of interest. The main shedding mode
was shown to be due to the shedding of large, oblique cavitation clouds, alternating in gradient in successive cycles.
The subharmonic mode was related to symmetric, large-scale cavitation, while the harmonic mode was single-event,
short-duration, cavities.
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